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Model of pair aggregation on the Bethe lattice
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We extend a recent model of aggregation of pairs of particles, analyzing the case in which the supporting
framework is a Bethe lattice. The model exhibits a critical behavior of the percolation theory type.
@S1063-651X~97!03403-X#

PACS number~s!: 05.50.1q
is-

a

o
ol
-
ec

s
f

l
it
a
x
c
ne

gl

,
er
siv
e
n

s
s a

et

e
he
-
In

do
ie

e,
us
us
we

o-

or
,
of
I. INTRODUCTION

The continuing interest of the scientific community in d
ordered systems and aggregation processes is due to
widespread occurrence of these phenomena in nature
throughout the pure and applied sciences@1–5#. This has led
to the development of theoretical models, which often put
equal footing problems quite distinct in appearance. Perc
tion theory~PT! @6# is a good example of a unifying concep
tual framework for problems such as the spreading of inf
tions @7#, fracture in heterogeneous materials@8#, sol-gel
transition and polymerization@9#, galactic structure@10#, dy-
namics of solar active regions@11#, recovery of oil from
porous rocks@12#, hopping in semiconductors@13#, or ther-
mal phase transitions@14#. Variants of the canonical model
are explored to obtain insights and to accommodate the
ture theoretical demands of phenomenology.

With this aim, in Ref.@15# we introduced a random mode
to simulate particle-pair aggregation. We used a lattice w
each site occupied by one particle. Each particle has its p
ner and both are linked by a string no longer than a ma
mum lengthl , which is an integer multiple of the basi
lattice spacing. The spatial distance between the two part
is chosen at random between 1 andl . When strings of dif-
ferent pairs intersect, they are assumed to become entan
Thus disjoint clusters of pairs are formed.@This type of
model may constitute an intermediate stage between the
dinary PT, in which single sites~or bonds! form aggregates
and other much more complex models involving clust
cluster interactions, only accessible through very expen
numerical simulations.# In one dimension there is no chanc
of forming a cluster of infinite pairs. Indeed, the distributio
of clusters composed ofs pairs decays exponentially withs.
On the contrary, in two dimensions~square lattices!, for
l >4, there appears a unique cluster connecting the limit
the underlying lattice. As the distance between the pairs i
integer number, the jump in the behavior betweenl 53 and
4 is drastic; in other words, there is no continuous param
that could be adjusted to reach a critical point.

In this paper, we fill this gap with a model of this sam
type, located in another well-known framework: the Bet
lattice ~BL!. The criterion of clustering is simplified to ren
der it tractable while retaining an interesting structure.
Sec. II, the model is presented. The casesl 52 and 3 are
solved and we also calculate a mixed case where a ran
numberp, between 0 and 1, fixes the respective probabilit
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of usingl 52 or 3 in building up clusters. In this mixed cas
an interesting critical structure appears. In Sec. III, vario
moments of the size distribution are calculated that allow
to calculate some critical exponents. Finally, in Sec. IV,
carry out a comparison with standard PT on the BL@16,17#
and state our conclusions.

II. MODEL

BL’s are characterized by their coordination numberZ,
but as the critical behavior that will emerge later isZ inde-
pendent, we will analyze the most simple caseZ53. Occa-
sionally, comments for other values ofZ will also be made.

In the philosophy of our model, pairs of particles are l
cated on different sites of a BL withZ53. See Fig. 1~a!.
There, a pair is identified by a particle with a letter, f
example,A, and its partner withA8. As we see in this figure
we agree that two pairs are linked if one of the particles
the pair is located on a site~elbow! left free by another pair
along its string. In Fig. 1~a!, for example, the pairAA8 is

FIG. 1. Entanglements between particle pairs:~a! allowed en-
tanglements and~b! forbidden entanglements.
2416 © 1997 The American Physical Society
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55 2417MODEL OF PAIR AGGREGATION ON THE BETHE LATTICE
linked toBB8 andBB8 to CC8 andEE8. The pairsDD8 and
FF8 are free and there is no chance of entanglement. A
our model, all sites are occupied by particles; the four f
sites left unoccupied in Fig. 1~a! would be the origins of
other clusters. Thus, what is drawn in Fig. 1~a! represents
one cluster of four pairs and two clusters of one pair. T
number of pairs forming a cluster will be denoted bys, and
ns will stand for the normalized probability of generatin
clusters of sizes, departing from a given site.

From what has been said in the previous paragraphs
deduce that there is a restriction in the location process.
restriction consists in assuming that there can be only
string running along any bond of the lattice. In Fig. 1~b!, the
bond betweenB andA8 has two strings, one belonging to th
pairAA8 and the other to the pairBB8. Also in Fig. 1~b!, the
bond betweenC8 andD8 has two strings, both belonging t
the pairCC8. Therefore, these two entanglements are forb
den.

Thus, by allowing only insertions on the free elbows
the type in Fig. 1~a!, we respect the basic branching structu
of the Cayley tree. This also leads to a great simplificati
any configuration formed bys linked pairs is characterize
by the number of free sitesn, where insertions are possibl
These configurations, forl fixed, will be calledVn . Obvi-
ously, if n50, we have a closed cluster already inaccess
to growth by new pair additions.

A. Casel 52

The casel 51 is trivial: n1~l 51!51. For l 52, and
always supposingZ53, one observes that after locating o
of the particles of the pair and heading in one direction,
partner has three possibilities of location~one of them at
distance 1 and two at distance 2!. Hence we find the prob
ability 1

3 of having a configurationV0 and
2
3 of having con-

figurationsV1. This can be expressed by the vector

V~1!5S 1
3

2
3
D ~1!

. ~2.1!

Hencen1~l 52!5V0
~1!51

3. The addition of a new pair to the
first will be represented by the action of a matrix onV~1!. In
this sense we follow the strategy used in Ref.@15# for one
dimension. The first component ofV~1!, which stands forV0,
is closed and, as a consequence, cannot grow. The con
rationV1 ~second component! can either be closed by a ne
addition ~probability 1

3! or give birth to a new configuration
V1 ~probability 2

3!. Thus, by inspection, we find that the form
of the relevant transfer matrix is

S 00 1
3

2
3
D S 1

3

2
3
D ~1!

5S 2
9

4
9
D ~2!

. ~2.2!

Thus, in our notation, the superscript in the vectors deno
the number of pairs entangled in a cluster and the value
the respective components are the probabilities of hav
none or one free elbow. Therefore, in Eq.~2.2! the first com-
ponent of the vector~s52! is the probability of generating a
closed configurationV0 and hencen2~l 52!52

9. For l 52, it
is clear that the process repeats itself identically because
transfer matrix is always the same. This implies that
in
e

e

e
he
e

-

f

:

le

s

u-

s
of
g

he

V~s11!5S 00 1
3 ~ 3

2 !s21

~ 2
3 !s

D S 1
3

2
3
D ~1!

5S 1
3 ~ 2

3 !s

~ 2
3 !s11D ~s11!

~2.3!

and, as a consequence,ns , i.e., the probability of generating
a cluster of sizes, is

ns5
1
3 ~ 2

3 !s21 ~ l 52, Z53!. ~2.4!

Thusns is a mere geometric progression. Its sum is

S5(
s51

`

ns5
1

3

1

12 2
3

51. ~2.5!

This result holds for anyZ. Thusns declines exponentially
with s and there cannot exist any clusters of infinite s
because the probability of generating finite clusters satur
the total probability. For later use, let us calcula
T5( s51

` sns , which provides the mean size of the fini
clusters. Rewriting Eq.~2.4! asns5

1
2a

s21, a52
3, we have

T5
1

3 (
s
sas215

1

3 (
s

d

da
~as!5

1

3

d

da S (
s
asD

5
1

3

d

da S a

a21D 53. ~2.6!

B. Casel 53

Let us analyze the casel 53 ~Z53!. Using arguments
similar to those used forl 52, we see that

V~1!5S 1
7

2
7

4
7

D ~1!

, ~2.7!

i.e., a first pair of particles can give rise to configurationsV0
~probability 1

7!, V1 ~probability 2
7!, and V2 ~probability 4

7!.
Thusn1~l 53!51

7. V
~2! is constructed by observing the con

figurations that can arise from those ofV~1! after adding a
new pair. In fact, there is an important difference with r
spect to the casel 52. Now the configurationV2 can give
rise to configurationsV1, V2, andV3, i.e., the size ofV

~2! has
one component more thanV~1!. This implies that the corre-
sponding transfer matrix is no longer a square matrix. In t
initial step we would have

S 0 1
7 0

0 2
7

1
7

0 4
7

2
7

0 0 4
7

D S 1
7

2
7

4
7

D ~1!

5S 1
73 2

7

~ 2
7 !21

4

72

23 4
7 3 2

7

~ 4
7 !2

D ~2!

. ~2.8!

Hencen2~l 53!5 2
49. As we can easily see, the transfer m

trix to pass from the stage (s) to ~s11! is an (s13)3(s12)
matrix of the form
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M ~s11!51
0 1

7 0 ••• 0 0 0

0 2
7

1
7 ••• ••• ••• •••

0 4
7

2
7 ••• ••• ••• •••

••• 0 4
7 ••• ••• ••• •••

••• ••• 0 ••• ••• ••• •••

••• ••• ••• ••• 0 ••• •••

••• ••• ••• ••• 1
7 0 •••

••• ••• ••• ••• 2
7

1
7 0

••• ••• ••• ••• 4
7

2
7

1
7

••• ••• ••• ••• 0 4
7

2
7

0 0 0 ••• 0 0 4
7

2 . ~2.9!

OnceM is known, ns~l 53! can be calculated for anys.
When the sum(ns for l 53 is made we obtain

S~ l 53!5 1
4 , ~2.10!

i.e., only 25% of probability corresponds to generate fin
clusters and the other 75% to generate infinite clusters.
forming this analysis forl 53 and arbitraryZ, we obtain

S~ l 53,Z!5
1

~Z21!2
.

C. Mixed case ofl 52 and 3

The results obtained forl 52 and 3 make it plausible to
think that a combination of the two cases will generate
model where the probability of generating infinite cluste
will start from zero in the way that occurs in standard p
colation@6#. With this aim, let us define the probabilityp of
using pairs taken from the pure casel 53, and a probability
q[12p, of using pairs ofl 52.

The calculation of the newS(p)[(sns can be done self-
consistently@6#. As any reference point is totally equivale
to any other, in order to generate finite clusters we can s
the following equation forS:

S5S 12p

3
1
p

7D12S 12p

3
1
p

7DS1
4p

7
S2 ~Z53!.

~2.11!

The two solutions of this second-order algebraic equation
S are

S51, S5
724p

12p
. ~2.12!

The second solution is valid forS<1, i.e., 16p<7; thus there
is a transition at a critical value ofp, pc5

7
1650.4375. For

p,pc , S51 ~this includes the casep50, i.e., l52!; for
p.pc , S5(724p)/12p; and for p51, S5 1

4, calculated by
summing up explicitly the successivens( l53). These results
are shown in Fig. 2.

Thus, in this model, atp,pc the BL is completely occu-
pied by finite clusters and atpc there appears the onset
e
r-

a

-

te

in

infinite clusters. Thus one expects the usual scaling pro
ties nearpc . This is indeed what occurs. From Eq.~2.12!, we
find

12S}~p5pc!
b, ~p→pc , p.pc!, ~2.13!

with b51, and, therefore, in our model, the probability
generating infinite clusters vanishes linearly whenp tends to
pc from above.

Equation~2.12! expresses the total probability of genera
ing finite clusters as a function ofp. The individual probabil-
ity of generating a cluster of sizes, at a givenp, follows
lines similar to those explained forl52 and 3. In this case
for arbitraryp, the first vectorV~1! would be

V~1!5S q

3
1
p

7
2q

3
1
2p

7
4p

7

D ~1!

5S 724p

21
1428p

21
12p

21

D ~1!

[S ab
c
D . ~2.14!

As usual, the first component of the vector corresponds
n1, i.e., the probability of generating a closed cluster form
by one pair. Now we are going to organize the calculation
an equivalent but more compact way. For the moment,
leaveV~1! aside and proceed to multiply the transfer mat
ces, denoting their products byX( i ), i.e., X~2![M ~2!,
X~3![M ~3!M ~2!, X~4![M ~4!M ~3!M ~2!, etc. The dimension of
X~2! is 433, that ofX~3! is 533, the next 633, and so on.
Thus, each of these matricesX( i ) is composed of three col
umns and~i12! rows, the first column formed by 0’s, th
second column is a vectorA( i ), of ~i12! components de-
noted by (A1 ,A2 ,...,Ai12), and the third column again is
vectorB( i ), composed of (B1 ,B2 ,...,Bi12); i.e., we have

FIG. 2. Sum of probabilities of generating finite clustersS ver-
susp in the mixed model.
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X~ i !53
0
0
0

•••
•••
•••
0

A1

A2

A3

•••
•••
•••
Ai12

B1

B2

B3

•••
•••
•••
Bi12

4 . ~2.15!

X~i11! is recurrently calculated fromX( i ). Denoting the
next order by primed letters, one finds that

A185aA2 ,

A285bA21aA3 ,

Aj85cAj211bAj1aAj11 ~2, j, i12! ~2.16!

Ai128 5cAi111bAi12 ,

Ai138 5cAi12 .

With the exchangeA↔B the coefficients for theB’s are
obtained by using relations identical to Eqs.~2.16!. Return-
ing now toV~1!, the first component of the vector obtained
actingX( i ) on V~1! will be ni(p), i.e.,

ni~p!5bA1~ i !1cB1~ i !. ~2.17!

The small-s cases can be computed explicitly by inspectio
giving

n15a, n25ab, n35a~b21ac!,... .

The firstA andB vectors used to feed recursion~2.16! at the
level i53 are

A~3!5~ab,b21ac,2bc,c2,0!,

B~3!5~a2,2ab,2ac1b2,2bc,c2!. ~2.18!

From Eq. ~2.18! the recursion relations~2.16! provide any
desiredns(p). Calculating the individualns’s, and hence
S(p), one reproduces Fig. 2 exactly.

The mean size of the finite clustersT(p), for p,pc , can
also be calculated in a self-consistent way, in a form sim
to that used forS @6#. As the mean size of a branch must
identical to that of a subbranch, we can formulate the follo
ing self-consistent equation forT:

T5(
s51

`

sns5S q31
p

7D12S q31
p

7D ~T11!

1
4p

7
~2T11! ~p,pc , Z53!. ~2.19!

which leads to

T5

21
16

7
162p

. ~2.20!

For p50 ~i.e., l52!, T53, as we calculated in Eq.~2.6!. For
p.pc , Eq.~2.19! has no solution because of the existence
,

r

-

f

the infinite clusters. Beyondpc one must take into accoun
the nontrivial denominatorsT5(ssns/(sns because they no
longer are unity. We find a completely symmetric behav
on both sides ofpc :

T}
1

up2pcug
, g51. ~2.21!

III. OTHER RESULTS OF THE MIXED MODEL

As at p50 ~i.e., l52! ns fulfills relation ~2.4!, we have

ns~p50!}e21.986. ~3.1!

Recalling other critical phenomena, atp5pc a power-law
behavior forns(pc) vs s is expected. This is indeed the re
sult. We obtain that for larges

ns~pc!}
1

st , t5
3

2
. ~3.2!

Nearpc we fit the ratiovs[ns(p)/ns(pc) by a scaling func-
tion of the form@6#

vs~p!5 f ~z!5e2cz1/s5e2c~p2pc!1/ss, ~3.3!

wherez5(p2pc)s
s, with c ands constants.

If Eq. ~3.3! is correct, it follows that a plot of logvs
againsts, for p fixed, should be a straight line, with a slop
2c(p2pc)

1/s. This has been checked on both sides ofpc .
Furthermore, if Eq.~3.3! is valid, then log@2~logvs!/s# ver-
sus logup2pcu should be a straight line with slope 1/s and
an intercept equal to log(c). This is shown in Fig. 3 for
s5216. The continuous line drawn here represents a stra
line of slope 2. From this figure one deduces thats'0.5 and
c54. Oncec ands are known, we can illustrate Eq.~3.3! by
plotting vs againstz for different values ofs. As scaling
holds, all the curves for differents should collapse on the
same Gaussian. Figure 4 shows the scaling functionvs(p)

FIG. 3. Numerical fit of thes exponent using data on both side
of the critical point. The solid line has a slope equal to 2.
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obtained for six different clusters sizess ~from s5210 to 215!.
Each symbol in Fig. 4 corresponds to an interval of one u
in the exponent. Note thatfmax[ns~zmax!51, which coincides
with the standard percolation result on the BL.

The consistency of these results with the previously c
culated critical behavior is clear.T is a divergent quantity a
pc ; by substituting the sum by an integral@6# we find

T'E
0

` 1

st21 e
2cup2pcu

1/ssds. ~3.4!

With the change of variablex5cup2pcu
2s, we obtain

T}up2pcu~t22!/sE
0

` 1

xt21 e
2xdx}

1

up2pcug
, ~3.5!

i.e., the valueg51 fits with t53
2 ands51

2.

IV. COMPARISON WITH THE STANDARD
PERCOLATION THEORY AND CONCLUSIONS

From the results above presented one deduces that
pair model has the same scaling behavior that PT exhibit
the BL. But in order not to create any confusion, we want
emphasize certain points. In this paper,ns is the probability
of generating clusters of sizes, departing from a point. If
instead of calculatingns by multiplying matrices as done
here, we had made a numerical simulation thatns would be,

FIG. 4. Test of the scaling assumption for the clustering nu
bers. Note the data collapsing for various cluster sizes, represe
by different symbols.
,

,

it

l-

his
n

for eachp, the ratio between the obtained number of clust
of sizes and the total number of clusters~which varies with
p!. In PT, the normalization ofns is made by dividing the
number of clusters of sizes by the total number of sites in
the lattice, which is a constant. As a consequence, in
modelT5(ssns/(sns is the mean cluster size, while in PT
T5(ss

2ns/(ssns . The critical exponents are equal to tho
in standard PT, exceptt, which is one unit less. As in ou
model the occupation fraction is unity~the whole board is
full of particles!, it seems that the successive momenta of
distributions ofns are one unit advanced with respect
standard PT and hence ourt53/2 is consistent withg5b51
52s, which are the same critical exponents of PT, but th
t55/2. The exponentt53/2 in power laws is typical in
mean-field descriptions of the size of avalanches in s
organized critical phenomena~see, for example, Ref.@18#!.

To conclude, let us recall that we have formulated
model of particle pairs on a BL. This choice has been do
for reasons of simplicity.~In ordinary non-tree-like lattices
one has to deal, from the start, with numerical simulatio
and the results are not so transparent.! This has been imple-
mented by reducing the process of clustering to inserti
respectful of the underlying branching geometry of the B
The successive probabilities of passing fromns to ns11 are
calculated by means of transfer matrices. Only forl52, these
matrices are square ands independent.S( l52)51. For l53
the matrices are no longer square. They grow withs, and at
each level ofs a new configuration is opened. This leads
the fact thatS( l53),1, which means that the probability o
generating infinite clusters is not null.

A mixed model betweenl52 and 3, with a tuning param
eter 0<p<1 to fix the proportion between the twol ’s, allows
the appearance of a critical pointpc . At pc , ns}1/s

t with
t53/2. Near the critical pointns5ns(pc)e

2cup2pcu
2s, with

c54. The probability of generating infinite clusters starts
p.pc with an exponentb51. The mean size of finite clus
ters diverges atpc with a critical exponentg51.

If instead of building a mixed model betweenl52 and 3
we take, for instance,l52 and 4~Z53!, Eq. ~2.20!, for ex-
ample, adopts the formT5 15

24 /(
5
242p), i.e., there is a shift to

the left of the critical point, now atpc5
5
24, but againg51.

Thus the universality of the critical exponents is maintain
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