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Model of pair aggregation on the Bethe lattice
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We extend a recent model of aggregation of pairs of particles, analyzing the case in which the supporting
framework is a Bethe lattice. The model exhibits a critical behavior of the percolation theory type.
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I. INTRODUCTION of using/=2 or 3 in building up clusters. In this mixed case,
an interesting critical structure appears. In Sec. lll, various

The continuing interest of the scientific community in dis- moments of the size distribution are calculated that allow us
ordered systems and aggregation processes is due to ttecalculate some critical exponents. Finally, in Sec. IV, we
widespread occurrence of these phenomena in nature amdrry out a comparison with standard PT on the [BB,17]
throughout the pure and applied scienfes5]. This has led and state our conclusions.
to the development of theoretical models, which often put on
equal footing problems quite distinct in appearance. Percola-

tion theory(PT) [6] is a good example of a unifying concep- Il. MODEL
tual framework for problems such as the spreading of infec-
tions [7], fracture in heterogeneous materigB], sol-gel BL's are characterized by their coordination numizer

transition and polymerizatiof®], galactic structur§¢10], dy-  but as the critical behavior that will emerge lateiZisnde-
namics of solar active regiond1], recovery of oil from pendent, we will analyze the most simple c&e3. Occa-
porous rockg12], hopping in semiconductofd 3], or ther-  sionally, comments for other values @fwill also be made.
mal phase transitiond 4]. Variants of the canonical models  In the philosophy of our model, pairs of particles are lo-
are explored to obtain insights and to accommodate the fusated on different sites of a BL witd=3. See Fig. (a).
ture theoretical demands of phenomenology. There, a pair is identified by a particle with a letter, for

With this aim, in Ref[15] we introduced a random model exampleA, and its partner witth". As we see in this figure,
to simulate particle-pair aggregation. We used a lattice wittwe agree that two pairs are linked if one of the particles of
each site occupied by one particle. Each particle has its parthe pair is located on a sitelbow) left free by another pair
ner and both are linked by a string no longer than a maxialong its string. In Fig. @8), for example, the paiAA’ is
mum length/, which is an integer multiple of the basic
lattice spacing. The spatial distance between the two partners
is chosen at random between 1 afndWhen strings of dif-
ferent pairs intersect, they are assumed to become entangled.
Thus disjoint clusters of pairs are formefhis type of
model may constitute an intermediate stage between the or-
dinary PT, in which single site®@r bond$ form aggregates,
and other much more complex models involving cluster-
cluster interactions, only accessible through very expensive
numerical simulation$.In one dimension there is no chance
of forming a cluster of infinite pairs. Indeed, the distribution
of clusters composed af pairs decays exponentially with
On the contrary, in two dimension&quare lattices for
/=4, there appears a unique cluster connecting the limits of
the underlying lattice. As the distance between the pairs is an
integer number, the jump in the behavior betwe&a3 and
4 is drastic; in other words, there is no continuous parameter
that could be adjusted to reach a critical point.

In this paper, we fill this gap with a model of this same
type, located in another well-known framework: the Bethe
lattice (BL). The criterion of clustering is simplified to ren-
der it tractable while retaining an interesting structure. In
Sec. Il, the model is presented. The cages2 and 3 are
solved and we also calculate a mixed case where a random FIG. 1. Entanglements between particle paie: allowed en-
numberp, between 0 and 1, fixes the respective probabilitiesanglements andb) forbidden entanglements.
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FF’ are free and there is no chance of entanglement. As ig(s+1) =
our model, all sites are occupied by patrticles; the four free
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sites left unoccupied in Fig.(d would be the origins of

other clusters. Thus, what is drawn in Figajlrepresents and, as a consequence,, i.e., the probability of generating
one cluster of four pairs and two clusters of one pair. Thea cluster of sizes, is
number of pairs forming a cluster will be denoted $yand
ng will stand for the normalized probability of generating n=1(2)s! (/=2 z=3) (2.4)
clusters of sizes, departing from a given site. s 33 -7 ' '
From what has been said in the previous paragraphs, we , , ) i
deduce that there is a restriction in the location process. ThENUSNs is & mere geometric progression. Its sum is
restriction consists in assuming that there can be only one
string running along any bond of the lattice. In Figb)l the - 1
bond betwee andA’ has two strings, one belonging to the S= 521 Ns=3 =1 (2.9
pair AA" and the other to the paBB’. Also in Fig. 1(b), the
bond betweerC’ andD’ has two strings, both belonging to _ ) .
the pairCC’. Therefore, these two entanglements are forbid-This result holds for any. Thusng declines exponentially
den. with s and there cannot exist any clusters of infinite size
Thus, by allowing only insertions on the free elbows of because the proba}pility of generating finite clusters saturates
the type in Fig. 1a), we respect the basic branching structureth® tgta' probability. For later use, let us calculate
of the Cayley tree. This also leads to a great simplification:] == s-1S", which provides the mean size of the finite
any configuration formed by linked pairs is characterized clusters. Rewriting Eq2.4) asns=3a"" ", a=3, we have
by the number of free sitas, where insertions are possible.
These configurations, fof fixed, will be calledV,,. Obvi- o 1 > sq 1 > d . 1d
ously, if =0, we have a closed cluster already inaccessible T34 %% T34 g3 (@)=37a
to growth by new pair additions.

linked toBB’ andBB’ to CC’ andEE’. The pairsDD’ and (0
0

> e

S

a
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A. Case/ =2 3da
The case/=1 is trivial: n,(/=1)=1. For /=2, and
always supposing =3, one observes that after locating one B. Cases/ =3
of the particles of the pair and heading in one direction, its ]
partner has three possibilities of locatigone of them at ~ Let us analyze the cas€=3 (Z=3). Using arguments
distance 1 and two at distance. 2lence we find the prob- Similar to those used for'=2, we see that
ability 3 of having a configuratioV, and § of having con- 1
figurationsV;. This can be expressed by the vector

=3. (2.9

vh= , (2.7
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i.e., a first pair of particles can give rise to configurati®fs
(probability 3), V,; (probability %), and V, (probability 3).
Thusn,(#=3)=%. V2 is constructed by observing the con-
figurations that can arise from those \#fY after adding a
ew pair. In fact, there is an important difference with re-
spect to the casg=2. Now the configuratior/, can give
rise to configuration¥,, V,, andVs, i.e., the size o has
one component more thaw¥. This implies that the corre-
sponding transfer matrix is no longer a square matrix. In this
initial step we would have

Hencen,(/=2)=V{P’=1. The addition of a new pair to the
first will be represented by the action of a matrix @Y. In
this sense we follow the strategy used in Rab] for one
dimension. The first component ¥f?, which stands foV,,

is closed and, as a consequence, cannot grow. The config
rationV, (second componentan either be closed by a new
addition (probability 3) or give birth to a new configuration
V, (probability 3). Thus, by inspection, we find that the form
of the relevant transfer matrix is

0 1 1\ (D) 2\ (2

3 3 9 2
(0 2) 2) :(4) . (2.2 010 ixz \ @

3/\3 3 1\ D
0 2 1 7 (2)2 i

Thus, in our notation, the superscript in the vectors denotes o 2 =7 7 (2.9
the number of pairs entangled in a cluster and the values of 0 7 ¢ 4 2% 4 x2
the respective components are the probabilities of having 0 0 ¢ 7 42
none or one free elbow. Therefore, in ER.2) the first com- 7 (7)

ponent of the vectofs=2) is the probability of generating a

closed configuratioV, and hencen,(/'=2)=3. For/'=2, it Hencen,(/'=3)=%. As we can easily see, the transfer ma-
is clear that the process repeats itself identically because thex to pass from the stages) to (s+1) is an (5+3)X(s+2)
transfer matrix is always the same. This implies that matrix of the form
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) FIG. 2. Sum of probabilities of generating finite clust&rser-
Once M is known, ng(/'=3) can be calculated for ang. susp in the mixed model.

When the sun®ng for /=3 is made we obtain

S(/=3)=1%, (2.10 infinite clusters. Thus one expects the usual scaling proper-
ties neamp, . This is indeed what occurs. From E§.12), we
i.e., only 25% of probability corresponds to generate finitefind

clusters and the other 75% to generate infinite clusters. Per-
forming this analysis for’=3 and arbitraryZ, we obtain
1-Sx(p=pc)’, (P—Pc, P>Po), (213
8(/23,2)2 W
with 8=1, and, therefore, in our model, the probability of
C. Mixed case of/=2 and 3 generating infinite clusters vanishes linearly wipetends to
The results obtained fof =2 and 3 make it plausible to P¢ o 8Pove.
€ results obtaine =2 and 3 make it plausible 10 =" g0 ,54i6n(2.12) expresses the total probability of generat-

think that a combination .(.)f the two cases .Wi.” generate "’\ng finite clusters as a function @f The individual probabil-
model where the probability of generating infinite clustersi,[y of generating a cluster of size at a givenp, follows

will start from zero in the way that occurs in standard P€lines similar to those explained fée=2 and 3. In this case
colation[6]. With this aim, let us define the probability of for arbitraryp, the first vectov® would be '
using pairs taken from the pure case=3, and a probability ’
g=1-—p, of using pairs of/'=2.

The calculation of the ne(p)=X.n, can be done self-

consistently{6]. As any reference point is totally equivalent —+ = R
to any other, in order to generate finite clusters we can state 3 7 21 a
' i : 29 2 14-8
the following equation foiS: vO— _q+ <p _ p b (2.14
1- 1- 4 3 7 21 c
s=| PPy 2P gy P (Z2=3). 4p 12p
3 7 3 7 7 2 >1
(2.11
The two solutions of this second-order algebraic equation in
S are As usual, the first component of the vector corresponds to
n,, i.e., the probability of generating a closed cluster formed
_ _7—4p by one pair. Now we are going to organize the calculation in
S=1, S= 12p - (2.1 an equivalent but more compact way. For the moment, we

leave V'Y aside and proceed to multiply the transfer matri-

The second solution is valid f@<1, i.e., 1<7; thus there ces, denoting their products b¥(i), i.e., X(2=M?,
is a transition at a critical value qf, p.=%=0.4375. For X(3)=M®M?@, X(4)=M“MPM?@ etc. The dimension of
p<p., S=1 (this includes the casp=0, i.e., |=2); for  X(2) is 4X3, that ofX(3) is 5X3, the next &3, and so on.
p>p., S=(7—4p)/12p; and forp=1, S=3, calculated by Thus, each of these matric¥gi) is composed of three col-
summing up explicitly the successing(l =3). These results umns and(i +2) rows, the first column formed by 0’s, the
are shown in Fig. 2. second column is a vectdk(i), of (i+2) components de-

Thus, in this model, ap<<p. the BL is completely occu- noted by @&;,A,,...,A;.,), and the third column again is a
pied by finite clusters and gi. there appears the onset of vectorB(i), composed of B,,B,,...,Bi,»); i.e., we have
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[0 A, B;] 20 —— .
0 A2 BZ - X p<p;
. 0 A3 BS 80 - O p>p,
X(I): Y e oo i (2.15)
DY DY DY E -
’g w0
L 0 Aiiz Bisz] =
8 B
X(i+1) is recurrently calculated fronX(i). Denoting the _9 50l
next order by primed letters, one finds that g
Ai:aAz, i B
60 & -
AL=bA,+aA, % )
r__ . . . 1 1 1 ‘ | \ ‘
Aj=cAj_1tbAj+aA; (2<j<i+2) (216 7.(33.0 Y 5 oy e
Ai,+2:CAi+1+bAi+2, IOg1o|p'pc|
Al 3=CA, FIG. 3. Numerical fit of ther exponent using data on both sides
1+ | "

of the critical point. The solid line has a slope equal to 2.
With the exchangeA— B the coefficients for theB’s are o )
obtained by using relations identical to E¢2.16. Return-  the infinite clusters. Beyond, one must take into account
ing now toV®, the first component of the vector obtained by the nontrivial denominator§ == .sny/2ns because they no
actingX(i) on VY will be n,(p), i.e., longer are unity. We find a completely symmetric behavior
on both sides op,:

ni(p)=bA(i)+cBy(i). (2.17 .
The smalls cases can be computed explicitly by inspection, Toe———7, y=L (2.2
N PPl
giving
n,=a, n,=ab, n3=a(b2+ac),... . IIl. OTHER RESULTS OF THE MIXED MODEL
The firstA andB vectors used to feed recursi¢h 16 at the As atp=0 (i.e.,|=2) n, fulfills relation (2.4), we have
leveli=3 are
ny(p=0)xe 1988 (3.1

A(3)=(ab,b?+ac,2bc,c?,0),
Recalling other critical phenomena, pt=p. a power-law
B(3)=(a?2ab,2ac+b?2bc,c?). (2.189  behavior forng(p.) vs s is expected. This is indeed the re-

. . _ sult. We obtain that for large
From Eg.(2.18 the recursion relation§2.16) provide any

desiredng(p). Calculating the individuaing's, and hence 1

S(p), one reproduces Fig. 2 exactly. ns(pc)ocs—T, T=
The mean size of the finite clustergp), for p<p., can

also be calculated in a self-consistent way, in a form similar, . L , i

to that used foiS [6]. As the mean size of a branch must be l\_learpc we fit the ratiovs=ns(p)/ns(p;) by a scaling func

) i tion of the form[6]

identical to that of a subbranch, we can formulate the follow-

ing self-consistent equation far: - o
" e e vp)=f(2)=e =g P (39

> (3.2

qa p qa p
377)743TT

+
372

(T+1) wherez=(p—p.)s’, with ¢ and o constants.
If Eq. (3.3 is correct, it follows that a plot of lag,

Tzz sng=
s=1

4p againsts, for p fixed, should be a straight line, with a slope
+—(2T+1) (p<p., Z=3). (2.19 —c(p—pc)l"’. This has been checked on both sidegpf
7 Furthermore, if Eq(3.3) is valid, then lo§—(logv)/s] ver-
which leads to sus logp—p.| should be a straight line with slopedland

an intercept equal to log§. This is shown in Fig. 3 for
2 s=2%% The continuous line drawn here represents a straight
T= 16 _ (2.20 line of slope 2. From this figure one deduces that0.5 and
&—p c=4. Oncec ando are known, we can illustrate E¢.3) by
plotting v againstz for different values ofs. As scaling
Forp=0 (i.e.,|=2), T=3, as we calculated in Eq2.6). For  holds, all the curves for differerd should collapse on the
p>p., EQ.(2.19 has no solution because of the existence ofsame Gaussian. Figure 4 shows the scaling funatigip)

ol-
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FIG. 4. Test of the scaling assumption for the clustering num-
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for eachp, the ratio between the obtained number of clusters
of sizes and the total number of clustefahich varies with
p). In PT, the normalization ofig is made by dividing the
number of clusters of size by the total number of sites in
the lattice, which is a constant. As a consequence, in our
model T=X2.:n/2ng is the mean cluster size, while in PT,
T=3°n/2sn,. The critical exponents are equal to those
in standard PT, except, which is one unit less. As in our
model the occupation fraction is unitghe whole board is
full of particles, it seems that the successive momenta of the
distributions of ng are one unit advanced with respect to
standard PT and hence oti=3/2 is consistent withy=8=1
=20, which are the same critical exponents of PT, but there
7=5/2. The exponentr=3/2 in power laws is typical in
mean-field descriptions of the size of avalanches in self-
organized critical phenomenr{aee, for example, Ref18]).

To conclude, let us recall that we have formulated a

bers. Note the data collapsing for various cluster sizes, representéfodel of particle pairs on a BL. This choice has been done

by different symbols.

obtained for six different clusters sizegfrom s=2to 2').

for reasons of simplicity(In ordinary non-tree-like lattices
one has to deal, from the start, with numerical simulations
and the results are not so transpanenhis has been imple-

Each symbol in Fig. 4 corresponds to an interval of one unitmented by reducing the process of clustering to insertions

in the exponent. Note thét,,,.=vs(Zmay =1, which coincides
with the standard percolation result on the BL.

respectful of the underlying branching geometry of the BL.
The successive probabilities of passing fragto ng ; are

The consistency of these results with the previously calcalculated by means of transfer matrices. Onlylfe@, these

culated critical behavior is cleaF. is a divergent quantity at
p.; by substituting the sum by an integf&] we find

T~ [7 L e-cp-pdigs (3.4)
0 ST—l . '
With the change of variable=c|p— p.|s, we obtain
Te|p—p |(T*2>"’jw e*deoc; (3.5
¢ o X7 lp=pcl”’

i.e., the valuey=1 fits with =3 and o=1.

IV. COMPARISON WITH THE STANDARD
PERCOLATION THEORY AND CONCLUSIONS

From the results above presented one deduces that t
pair model has the same scaling behavior that PT exhibits o

matrices are square asdndependentS(I=2)=1. Forl =3
the matrices are no longer square. They grow wjthnd at
each level ofs a new configuration is opened. This leads to
the fact thatS(l = 3) <1, which means that the probability of
generating infinite clusters is not null.

A mixed model betweeh=2 and 3, with a tuning param-
eter O=p=1 to fix the proportion between the twis, allows
the appearance of a critical poipt. At p;, ngx1/s™ with
7=3/2. Near the critical pointis=ng(pc)e ¢P~Pd*, with
c=4. The probability of generating infinite clusters starts at
p>p. with an exponenB=1. The mean size of finite clus-
ters diverges ap. with a critical exponenty=1.

If instead of building a mixed model betweés2 and 3
we take, for instancd,=2 and 4(Z=3), Eq. (2.20, for ex-
ample, adopts the forffi=32/(2—p), i.e., there is a shift to
he left of the critical point, now ap.=;, but againy=1.

I{Ewus the universality of the critical exponents is maintained.

the BL. But in order not to create any confusion, we want to

emphasize certain points. In this papey,is the probability
of generating clusters of sizg departing from a point. If

instead of calculatinghg by multiplying matrices as done

here, we had made a numerical simulation thatvould be,
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